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Abstract

A spatially explicit dataset of aboveground live forest biomass was made from ground measured inventory plots for the conterminous U.S., Alaska
and Puerto Rico. The plot data are from the USDA Forest Service Forest Inventory and Analysis (FIA) program. To scale these plot data to maps, we
developed models relating field-measured response variables to plot attributes serving as the predictor variables. The plot attributes came from
intersecting plot coordinates with geospatial datasets. Consequently, these models serve asmappingmodels. The geospatial predictor variables included
Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; land cover proportions and other data from the
National Land Cover Dataset (NLCD); topographic variables; monthly and annual climate parameters; and other ancillary variables. We segmented the
mappingmodels for theU.S. into 65 ecologically similarmapping zones, plusAlaska and PuertoRico. First,we developed a forestmask bymodeling the
forest vs. nonforest assignment of field plots as functions of the predictor layers using classification trees in See5©. Secondly, forest biomass models
were built within the predicted forest areas using tree-based algorithms in Cubist©. To validate the models, we compared field-measured with model-
predicted forest/nonforest classification and biomass from an independent test set, randomly selected from available plot data for each mapping zone.
The estimated proportion of correctly classified pixels for the forest mask ranged from 0.79 in Puerto Rico to 0.94 in Alaska. For biomass, model
correlation coefficients ranged from a high of 0.73 in the Pacific Northwest, to a low of 0.31 in the Southern region. There was a tendency in all regions
for these models to over-predict areas of small biomass and under-predict areas of large biomass, not capturing the full range in variability. Map-based
estimates of forest area and forest biomass compared well with traditional plot-based estimates for individual states and for four scales of spatial
aggregation. Variable importance analyses revealed that MODIS-derived information could contribute more predictive power than other classes of
informationwhen used in isolation. However, the true contribution of each variable is confounded by high correlations. Consequently, excluding any one
class of variables resulted in only small effects on overall map accuracy. An estimate of total C pools in live forest biomass of U.S. forests, derived from
the nationwide biomass map, also compared well with previously published estimates.
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Keywords: Forest biomass; MODIS; Classification and regression trees; Forest probability; Carbon; FIA
⁎ Corresponding author. USDA Forest Service, Rocky Mountain Research Station, 507 25th Street, Ogden, UT 84401, United States, Tel.: +1 801 625 5384; fax: +1
801 625 5723.

E-mail address: gmoisen@fs.fed.us (G.G. Moisen).

0034-4257/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.rse.2007.08.021

mailto:gmoisen@fs.fed.us
http://dx.doi.org/10.1016/j.rse.2007.08.021


1659J.A. Blackard et al. / Remote Sensing of Environment 112 (2008) 1658–1677
1. Introduction

The Forest Inventory and Analysis (FIA) program of the
USDA Forest Service collects data annually on the status and
trends in forested ecosystems nationwide. These inventory data
support estimates of forest population totals over large geographic
areas, (Scott et al., 2005). Regional maps of forest characteristics
would make these extensive forest resource data more accessible
and useful to a larger and more diverse audience. Important
applications of such maps include broad-scale mapping and
assessment of wildlife habitat; documenting forest resources
affected by fire, fragmentation, and urbanization; identifying land
suitable for timber production; and locating areas at high risk for
plant invasions, or insect or disease outbreaks. Thus, there is a
need to produce and distribute geospatial data of forest attributes,
complementing FIA inventory data.

Total aboveground live biomass is a forest characteristic of
particular interest. Forest soils and woody biomass hold most of
the carbon in Earth's terrestrial biomes (Houghton, 1999). Land-
use change, mainly forest burning, harvest, or clearing for
agriculture, may compose 15 to 40% of annual human-caused
emissions of carbon to the atmosphere, and terrestrial ecosystems,
mainly through forest growth and expansion, absorb nearly as
much carbon annually. However, estimates of land-atmosphere
carbon fluxes, and the net of expected future ones, have the
largest uncertainties in the global atmospheric carbon budget,
which adds to uncertainties about future levels and impacts of
greenhouse gasses (GHGs) in the atmosphere (Houghton, 2003;
Prentice et al., 2001).

Consequently, the levels, mechanisms and spatial distribution
of forest land-atmosphere C fluxes are an important focus for
reducing uncertainties in the global C budget (Fan et al., 1998;
Holland et al., 1999; Pacala et al., 2001; Schimel et al., 2001).
Ecosystem process models that are physiologically-based, and
that use satellite image-derived indices of photosynthesis, have
permitted unprecedented global assessments of ecosystem pro-
ductivity and carbon sinks at a spatial resolution of 0.5° (Nemani
et al., 2003; Potter et al., 2003). The mechanistic nature of these
models identifies how observed patterns in ecosystem produc-
tivity may relate to climate and atmospheric changes (Nemani
et al., 2003). However, validating atmospheric and ecosystem
model estimates of net forest C fluxes, and quantifying the C
fluxes associated with changes in land use, which dominate these
fluxes over longer time periods, requires spatially extensive data
on forest C pools and net fluxes. Maps of forest biomass permit
spatially explicit estimates of forest carbon storage and net fluxes
from land-use change.

Our objectives here are to 1) produce a spatially explicit
dataset of aboveground live forest biomass from ground
measured inventory plots, at a 250-m cell size, for the
conterminous U.S., Alaska and Puerto Rico; 2) evaluate model
performance and spatially depict uncertainty in the dataset; 3)
explore the relative contribution of the many predictor layers to
the biomass models; and 4) use the resulting dataset to estimate
aboveground live forest biomass and implied carbon storage for
this area. We also describe a national geospatial predictor
database that supported the mapping and how we standardized
national FIA data, developed predictive models, and assessed
model error.

2. Methods

2.1. Data

2.1.1. Response variables
The US Forest Service FIA program inventories the Nation's

forests via a network of ground-based inventory plots in which
forest structure and tree species composition are measured to
produce estimates of forest attributes like basal area by species,
total volume, and total biomass. Plots are located with an intensity
of about one plot per 2400 ha. Although the program historically
collected data periodically (every 5 to 20 years) for each state in
the country, it recently shifted to an annual rotating panel system.
This new system samples 10 to 20% of each state's plot network
annually (Bechtold & Patterson, 2005). This study used a mixture
of annual and historic periodic data to ensure enough training
plots in all parts of the country, with dates of collection ranging
between 1990 and 2003. The advantages of modeling response
variables collected from a probabilistic sample (such as FIA's plot
network) over those collected from a purposive sample are
explored in Edwards et al. (2006).

The FIA program observes, measures, and predicts many
forest attributes on each plot (Miles et al., 2001). This nationwide
biomass mapping effort modeled two of these plot-level response
variables: a binary forest/nonforest classification and above-
ground live forest biomass. According to FIA definitions, forest
land is at least 0.405 ha in size, has a minimum continuous
canopy width of 36.58 m with at least 10% stocking, and has an
understory undisturbed by a nonforest land use like residences or
agriculture. Aboveground live biomass includes biomass in live
tree bole wood, stumps, branches and twigs for trees 2.54-cm
diameter or larger and is derived from region- or species-specific
allometric equations.

2.1.2. National geospatial predictor layers
A nationwide geospatial dataset of layers of predictor

variables, also called the national geospatial predictor layer
database, was assembled for use in the biomass models. The data
layers included satellite imagery and predicted land-cover from
Moderate Resolution Imaging Spectro-radiometer (MODIS)
(Justice et al., 2002), Landsat Thematic Mapper image-derived
National Land Cover Dataset (NLCD92, Vogelmann et al., 2001),
raster climate data, and topographic variables. Datasets with
native spatial resolutions other than 250 m were resampled with a
nearest neighbor procedure if categorical, and a bilinear
interpolation procedure if continuous. The 250-m spatial
resolution of the predictor dataset has two origins. First, the
coarser spatial scale of MODIS would be practical given the
national extent of the project, and the MODIS sensor bands 1 and
2 are available at that spatial resolution. As a result, MODIS
vegetation index data are available with 250-m pixel sizes.
Secondly, we expected that coarser image data would have
scaling advantages when working with passive optical imagery,
as we discuss later.
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Data from MODIS for the year 2001 included all land surface
reflectance bands (Vermote & Vermueulen, 1999) (MOD 09v003)
from three 8-day image composites at 500-m resolution (be-
ginning Julian days 097, 225, 321), three 16-day vegetation index
(VI) composites (Huete et al., 2002) (MOD 13v003) at 250-m
resolution over the same three compositing periods, and percent
tree cover (MOD 44) at 500-m resolution for 2001 (Hansen et al.,
2003). The compositing periods represented early, peak, and leaf-
off phenological conditions in the continental United States. For
Puerto Rico, persistent cloudiness necessitated data from dry-
season MODIS image compositing periods, including six periods
from 2001–2003. The MOD 09 8-day image composites use a
minimum-blue criterion to select for clearest conditions (Vermote
& Vermueulen, 1999). The compositing algorithm for MOD 13
VI data first selects clear pixels over the compositing period with
the MODIS cloud mask. A pixel-level fit to a bidirectional
reflectance distribution function (BRDF) then estimates a near-
nadir reflectance for each band for calculating VI values. If fewer
than five pixels are clear over the compositing period, then the
algorithm selects a clear pixel based on viewing angle. Otherwise,
the algorithm selects the pixel with the maximum Normalized
Difference Vegetation Index (NDVI) (Huete et al., 2002). We
performed no additional image compositing or cloud filling for
continental U.S. imagery. Some cloudy areas were masked from
the Puerto Rico composites and filled with appropriate composite
imagery from other dates.

Landsat image-based land cover for the conterminous U.S.
(Vogelmann et al., 2001) and Puerto Rico (Helmer et al., 2002)
provided data on proportional cover of forest, shrubland, wetland
and urban/barren lands (Puerto Rico only). These 30-m
components of the national geospatial predictor data used focal
functions to summarize the land cover class proportions within a
9×9 moving window and subsequently resampled the data to
250-m with bilinear resampling. Climate data included 30-year
(1961–1990) average monthly and annual precipitation and
temperature measures, represented by spatial resolutions of about
4 km for the conterminous U.S. (Daly et al., 2000), 2 km for
Alaska (Daly, 2002) and 420-m for Puerto Rico (Daly et al.,
2003). The dataset also included elevation from 30-m digital
elevation models (DEMs) (Gesch et al., 2002), and other
topographic derivatives from those DEMs, including slope,
dominant aspect, and an indicator of aspect variety. This indicator
is calculated as the total number of unique aspect values (or the
variety) within the nine by nine window surrounding each 30-m
cell. The resulting dataset was resampled to a 250-m cell size. The
same resampling method used for the 30-m Landsat products
(described above) was used to summarize the elevation-based
attributes at 250-m. A final topographic variable that several
models used was a horizontal-distance-to-nearest-stream mea-
sure, which is the Euclidean distance from each pixel to its nearest
above-ground water body, as the crow flies.

2.2. Modeling strategy

2.2.1. Process overview
We created a nationwide modeling dataset by intersecting plot

locations with the geospatial predictor layers, and extracting all
relevant data. Resulting values of predictor layers for each plot
were then linked to the corresponding forest/nonforest and forest
biomass response variables. We segmented this modeling dataset
into 65 ecologically unique mapping/modeling zones (Fig. 1)
(Homer & Gallant, 2001) which permitted separate models to
target the conditions unique to each zone. However, we
aggregated adjacent zones in sparsely forested regions, which
had too few forested plots, to increase the number of observations
in the models for those zones. Independent test sets were created
by randomly selecting 10 to 15% of the plots by mapping zone,
leading to proportional distribution by zone. These test sets were
withheld to assess model performance, except in Puerto Rico
where insufficient numbers of plots forced the use of 10-fold
crossvalidation for evaluating biomass model performance. Using
classification trees with boosting for each mapping zone, we first
produced a 250-m resolution forest mask by modeling the binary
variable of forest/nonforest as a function of all the variables
contained in the national geospatial predictor layers. We then
selected only those FIA plots that fell within the forested portion
of the forest mask as training data for the biomass models.
Regression tree algorithms were then used to model forest
biomass (also at 250 m) as a function of those same predictor
variables used in the forest/nonforest models for each mapping
zone. Because of ecological differences between zones, the way
in which the classification trees used and partitioned the predictor
variables was very different by zone. Also, some regional
variations in the methods themselves were used to improve the
forest/nonforest and biomass models. Examples include inclusion
of regional specific predictor layers and larger groupings of
similar mapping zones. We then predicted forest biomass on a
per-pixel basis by applying the models developed for each
mapping zone to the corresponding predictor layers for that zone.
Pixels with nonforest class label predictions were omitted from
subsequent analyses, and labeled as having no forest biomass.
Finally, using the classification confidence and absolute error
information available from the models, two additional geospatial
datasets were created to capture the per-pixel uncertainty
associated with each estimate – resulting in a map of forest
probability, and a map of biomass percent error (details in section
on Uncertainty maps). The individual zone maps of forest/
nonforest, forest probability, biomass, and percent error
for biomass were mosaiced to form nationwide datasets. A
state boundary geospatial layer identified coastal shorelines
(nationalatlas.gov/statesm.html), and a national hydrography
layer (nationalatlas.gov/hydrom.html) delineated interior water
boundaries.

2.2.2. Classification and regression trees
Classification and regression tree modeling, or recursive

partitioning regression (Breiman et al., 1984), is available in
many software packages and is now common in remote sensing
applications. To give a general overview of the methodology,
trees subdivide the space spanned by the predictor variables into
regions for which the values of the response variable are most
similar, and then assign a unique prediction for each of these
regions. The tree is called a classification tree if the response
variable is discrete and a regression tree if the response variable is

http://nationalatlas.gov/statesm.html
http://nationalatlas.gov/hydrom.html


Fig. 1. Mapping/modeling zones (Homer & Gallant, 2001) segmented forest vs. nonforest and biomass classification and mapping models.
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continuous. Tree-based methods have evolved to enhance their
predictive capabilities. Two recent enhancements have had
considerable success in mapping applications (Chan et al.,
2001). One is known as bagging, or bootstrap aggregation (Bauer
& Kohavi, 1998; Breiman, 1996). The other is called boosting
(Freund & Schapire, 1996) with its variant Resampling and
Combining (ARCing) (Breiman, 1998). These iterative themes
each produce a committee of expert trees by resampling with
replacement from the initial data set, then averaging the trees
with a plurality voting scheme if the response is discrete, or
simple averaging if the response is continuous. The difference
between bagging and boosting is the type of data resampling. In
bagging, all observations have equal probability of entering the
next bootstrap sample. In boosting, problematic observations,
those which are frequently misclassified, have a higher prob-
ability of selection. The performance of tree-based methods for
modeling FIA response variables is compared to other modeling
techniques in Moisen and Frescino (2002) and Moisen et al.
(2006).

Specifically for this study, classification trees with boosting (5
or 10 trials) and pruning in See5 (www.rulequest.com, Quinlan,
1986, 1993) generated the forest mask based on a 0.5 threshold
for distinguishing forest from nonforest. Cubist (www.rulequest.
com) generated the mapping models of forest biomass within
pixels predicted to be forested. Cubist is a proprietary variant on
regression trees with piecewise nonoverlapping regression.
Specific software options used for most mapping zones included
the following: either 5 or 10 committee models; use of rules alone
(no instances); minimum rule cover of 1% of cases; extrapolation
up to 10%; and no maximum number of rules.

2.3. Model performance

Measures for assessing and depicting accuracies, errors, and
uncertainties of the modeled spatial datasets were chosen by
taking into consideration traditional methods of accuracy
assessment, known characteristics of the datasets, and their
anticipated uses.

2.3.1. Per-pixel measures
Accuracy and error measures for the forest mask included

proportion of correctly classified units (PCC), Kappa (Cohen,
1960), as well as omission and commission errors for both
the forest and nonforest classes. PCC is a statistic that can
be deceptively high when the proportion of a class, in this
case forest, is very low or very high. The Kappa statistic
measures the proportion of correctly classified units after
removing the probability of chance agreement. Errors of
omission (1-producer's accuracy) result when a pixel is
incorrectly classified into another category, thus being omitted
from its correct class. Errors of commission (1-user's accuracy)
result when a pixel is committed to an incorrect class. For the
biomass map, the per-pixel accuracy measures that we calculated
on the independent test sets included average absolute error,

http://www.rulequest.com
http://www.rulequest.com
http://www.rulequest.com
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relative error, and correlation. The average absolute error for a
set of test cases is the average of the sizes of differences between
the actual and predicted values for each case, expressed in metric
tons per ha. The relative error is the ratio of the average absolute
error to the average absolute error that would result by
predicting the value of each case as the mean of the training
set. Because it is normalized by the predicted value's unit of
measure, the relative error term is useful for comparing the
performance of different models. It also gives an indication of
individual model performance above and beyond simply using
the average value from the training data as its ‘predicted’ value.
A relative error substantially less than one indicates that the
model predictions are substantially better than simply using a
prediction of the sample mean. The correlation coefficient is a
standard measure of the linear relationship between observed
and predicted values.

2.3.2. Uncertainty maps
One of the goals of this study was to provide spatially explicit

depictions of the uncertainty in both the forest mask and forest
biomass maps. Maps of uncertainty are derived from the
modeling process itself and provide users (and developers)
information on where the model was more and less confident of
the estimate based on the training and predictor information
available and the modeling technique used.

For the forest/nonforest map, a binary response variable, the
need for a spatial depiction of uncertainty was satisfied with a
forest probability dataset, depicting the probability that any
individual pixel could be classified as forest. In many modeling
applications for binary response variables, predictions are made
on a continuum of 0 to 1, indicating probability of a pixel
belonging to the class of interest. Because of the way in which
See5 constructs predictions, a map of forest probability had to be
back-engineered in the following way. First, the public C code
distributed with See5 (http://rulequest.com/see5-public.zip) en-
abled us to produce a confidence value for each pixel prediction
as a forest/nonforest classification confidence map. This software
routine operates as follows: if a single classification tree is used
and a case is classified by a single leaf of a decision tree, the
confidence value assigned is the proportion of training cases at
that terminal node that belongs to the predicted class. If more than
one terminal node is involved, the confidence value assigned is a
weighted sum of the individual nodes' confidences. If more than
one tree is involved (eg. boosting), the value is a weighted sum of
the individual trees' confidences. Second, a forest probability
map was created by remapping confidence values from the public
Table 1
Per-pixel measures of performance for forest/nonforest maps based on independent

Region PCC Kappa Omission forest Commission fores

Northeast 0.89 0.77 0.08 0.09
Northcentral 0.93 0.80 0.15 0.15
Interior West 0.91 0.76 0.17 0.18
Pacific Northwest 0.85 0.61 0.05 0.15
Southern 0.86 0.69 0.10 0.13
Alaska 0.94 0.88 0.07 0.08
Puerto Rico 0.79 0.57 0.07 0.28
C code to a range of 0 to 0.5 for nonforest pixels and 0.5 to 1 for
forest pixels, creating a new range from 0 to 1. Here, values near 0
indicate a more confident prediction for nonforest areas, values
near 1.0 indicate a more confident prediction for forest areas, and
values around 0.55 are the most uncertain.

For the map of aboveground forest biomass, spatial depictions
of uncertainty took the form of biomass percent error maps. These
were derived by first extracting the weighted average absolute
error of all the rules that applied to each pixel, in which the
average absolute error for each rule is from the training data. The
biomass percent error map then resulted from dividing that
weighted average absolute error by the predicted biomass value at
that pixel. Such uncertainty maps provide information regarding
both the location and magnitude of potential errors in the modeled
estimates. They allow users to incorporate this information into
all further modeling or analysis efforts using the estimated
biomass and forestland maps/datasets (Fortin et al., 1999;
Mowrer, 1994; Woodbury et al., 1998).

2.3.3. Agreement of spatial aggregations
FIA plot data is typically used to produce unbiased estimates

of forest population totals using design-based inference
(Cochran, 1977; Särdnal et al., 1992; Thompson, 1997) for
areas of sufficient size. Often in practice, however, maps may be
used to produce population estimates of these mapped variables
by summing pixels over the geographic area of interest. This
method relies on model-based inference (Valliant et al., 2001).
To provide information on the comparative accuracy of these
“map-based” estimates of area of forestland and total biomass,
we compared them to “plot-based” estimates of total forest area
and biomass by state for the US using FIA sample plots (Scott
et al, 2005). Note that although FIA will use remote sensing
information to stratify sample plots to improve precision in
estimates of forest population totals, the plot-based estimates
used here are solely based on field data. This comparison allows
users of inventory data who are familiar with the traditional plot-
based estimates to examine the location and magnitude of areas
of over-and underestimation of map-based estimates.

Next, in order to examine the scales at which aggregated
estimates of forest area or total forest biomass agree with plot-
based estimates, we also made comparisons for hexagons at four
different sizes: ∼16,000, ∼21,000, ∼39,000, and ∼65,000 ha.
The hexagons were derived by tessellation from the Environ-
mental Monitoring and Assessment Program hexagons (White
et al., 1992) that are used as the basis for the FIA sampling design
(Bechtold & Patterson, 2005). For both area of forestland and
test sets, reported by region

t Omission nonforest Commission nonforest Test set sample size

0.14 0.14 1181
0.05 0.05 5449
0.07 0.06 7196
0.39 0.15 2588
0.22 0.17 3138
0.05 0.04 6553
0.36 0.10 28

http://rulequest.com/see5-public.zip


Fig. 2. A map of aboveground forest biomass (dry weight) in live trees, tumps, branches and twigs derived from modeling FIA plot biomass as a function of geospatial predictor variables.
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Table 2
Per-pixel measures of performance for biomass maps based on independent test
sets (except for Puerto Rico where 10-fold cross-validation was used), reported
by region

Region Average absolute
error

Relative
error

Correlation Test set sample
size

Northeast 60.1 0.89 0.39 1156
Northcentral 42.5 0.88 0.46 1134
Interior West 42.2 0.65 0.66 2023
Pacific
Northwest

163.1 0.72 0.73 1591

Southern 60.2 0.92 0.31 1939
Alaska 91.5 0.59 0.69 430
Puerto Rico 65.0 0.51 0.92 ⁎

⁎Based on a 10-fold cross validation.
Average absolute error is reported in metric tons per hectare.
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aboveground forest biomass, agreement between the mean of
pixel predictions for all pixels with centers in a hexagon to the
mean of plot observations for all plots with centers in the hexagon
was assessed as follows. For each hexagon, the mean pixel
prediction, μ̂pixel, for a hexagon was compared to the plot-based
mean, μ̂plot, using,

s ¼ l̂pixel �l̂plot
SE l̂plot

� �

where SE(μ̂plot) denotes the design-based standard error. Here, τ
is not a formal statistic with an established distribution and
probability levels. Rather it is constructed as a heuristic tool by
with which to assess relative agreement between traditional plot-
based estimates, and map-based estimates at varying scales of
aggregation.

Arrays of hexagons of four sizes were considered:
∼16,000 ha, ∼21,000 ha, ∼39,000 ha, and ∼65,000 ha. Based
on a sampling intensity of approximately one plot per 2400 ha,
hexagons of ∼16,000 ha would include 6–7 plots, about the
smallest sample sizes that would yield reliable estimates of SE
(μ̂plot). Selection of the sizes of the larger hexagons was arbitrary,
except for the ∼65,000-ha EMAP hexagons, from which unique
ID codes are attributed to FIA plots and which are used in several
national assessments. For areas of the country in which a
complete cycle of sampling has not been completed, some
hexagons may include fewer than 6–7 plots. No comparisons of
pixel-and plot-based means were calculated for hexagons with
fewer than 5 plots. Tau-values exceeding 2 were interpreted as a
conservative indication that model-based estimates disagreed
with plot-based estimates within each hexagon.

2.3.4. Variable importance
A series of variable importance analyses were conducted to

assess the relative contributions of the numerous predictor
variables to the modeling process. First, the relative importance
of the major groups of predictor variables were assessed in each
region. This was measured by percent improvement, or decrease,
in relative error when each major group was used alone as
predictor sets in different models of biomass. Major groups were
the “MODIS group” (including NDVI, Enhanced Vegetation
Index [EVI], spectral bands, fire, and percent tree cover), the
“Climate group” (including all precipitation variables), the
“NLCD group” (including only NLCD-derived variables), and
the “Topo group” (including topographic variables). Note that in
Alaska and in Puerto Rico, no NLCD data were available,
and surrogate variables labeled as the “Veg group” were used
instead.

Next, the relative importance of sub-groups of the “MODIS
group” were measured by percent improvement, or decrease, in
relative error when each of these sub-groups was used exclusively
in the models. These sub-groups were the “Bands sub-group”
(including all MODIS bands, all dates), the “NDVI sub-group”
(including al NDVI variables), “Treecov sub-group” (including
percent tree cover), the “EVI sub-group” (including all EVI
variables), and the “Fire sub-group” (including all fire-related
variables).

Because the true contribution of each variable to the final
biomass map is confounded by high correlation between
variables, variable groups were excluded in turn from the original
biomass model, and the effect on relative error examined. In
addition, the potential effect on pixel aggregations were explored
by examining changes in density functions of predicted values
under the different models excluding variable groups in turn.

2.3.5. Estimates of C pools
Finally, estimates of C pools in live forest biomass of U.S.

forests, derived from the map developed in this study, were
compared with estimates from other national studies. Estimates of
the mass of C for live trees, stumps, branches and twigs were
obtained by summing one-half the predicted biomass for each
pixel over the conterminous U.S., and Alaska. The one-half rule
is based on Brown and Lugo (1992). Mass of C for roots was
approximated as 20% of total predicted biomass (Cairns et al.,
1997). Results were compared those obtained by Turner et al.
(1995), Birdsey and Heath (1995), Potter (1999), and Dong et al.
(2003).

3. Results

All maps produced in this study, including the forest/nonforest
mask, forest probability, forest biomass, and biomass percent
error, are available for download via http://svinetfc4.fs.fed.us/
rastergateway/biomass/.

3.1. Per pixel measures

As illustrated in Table 1, the forest mask was reasonably
accurate in all regions, with regional PCCs ranging from 0.79
in Puerto Rico to 0.94 in Alaska, and regional Kappa values
ranged from 0.57 in Puerto Rico to 0.88 in Alaska, reflecting
fair to excellent class agreement. Errors of omission for forest
were generally low, ranging from 0.05 in the heavily forested
Pacific Northwest to 0.17 in the more nonforested Interior
West, while errors of commission for forest ranged from 0.08
in Alaska to 0.28 in Puerto Rico. Errors of omission for
nonforest ranged from 0.05 in the Northcentral region and

http://svinetfc4.fs.fed.us/rastergateway/biomass/
http://svinetfc4.fs.fed.us/rastergateway/biomass/


Fig. 3. Probability of forest, biomass, and percent error in biomass mapped over Uinta Mountains in Utah, (a, b, and c respectively). Probability of forest, biomass, and
percent error in biomass mapped for the Greater Mohawk Valley Region, New York (d, e, and f respectively).
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Fig. 3 (continued ).
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Fig. 4. Plot-based and map-based estimates of (a) forestland and (b) total forest biomass (dry weight), by state. States are grouped by USFS Forest Inventory and
Analysis Region. A separate Y axis is provide for the Pacific Northwest states because of the substantially different scales involved.
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Alaska to 0.39 in the Pacific Northwest, while errors of
commission for nonforest ranged from 0.04 in Alaska to 0.17
in the Southern region. Per-pixel measures of performance for
the forest/nonforest maps are given for individual and
aggregated zones in Appendix A.

The forest biomass map is presented in Fig. 2. The models of
aboveground live forest biomass varied by region in their ability
to predict pixel-level values (Table 2). Correlation coefficients
ranged from 0.92 in Puerto Rico down to 0.31 in the Southern
region. The western regions had substantially better results than
did those in the eastern regions of the US. Relative errors ranged
Table 3
Assessment of agreement between plot-and map-based estimates of forest land area

Hexagon
size (ha)

Estimate Number
of
hexagons

Average
plots/
hexagon

Prop

−3b

16,000 Forest area 25,512 9.40 0.01
21,000 Forest area 22,327 10.73 0.01
39,000 Forest area 15,993 14.99 0.01
65,000 Forest area 10,439 22.96 0.02
16,000 Biomass 25,512 9.40 0.00
21,000 Biomass 22,327 10.73 0.00
39,000 Biomass 15,993 14.99 0.00
65,000 Biomass 10,439 22.96 0.00
from 0.51 in Puerto Rico to 0.92 in the Southern Region, with the
former value indicating an approximate 50% improvement over
using the sample mean from the model's training dataset, versus a
more modest improvement in performance over a simple sample
mean indicated by the latter value. Most individual mapping
zones (75%) had relative errors less than 1.0, indicating gains in
the modeling process. However, some zones actually had a
relative error greater than 1.0 indicating the models performed
worse than using a simple sample mean. This was particularly
true in zones with a high proportion of scattered forest that is hard
to identify with a 250 m pixel (e.g., zones 52, 44, and 49) and/or
and total biomass over 4 scales of spatial aggregation across the continental US

ortion of hexagons

τ −3≤τb−2 −2≤τb2 2≤τb3 τN3

3 0.011 0.938 0.026 0.012
4 0.012 0.931 0.030 0.014
9 0.019 0.908 0.036 0.018
3 0.026 0.879 0.047 0.026
3 0.007 0.887 0.042 0.061
4 0.008 0.879 0.046 0.063
5 0.012 0.860 0.049 0.074
8 0.019 0.835 0.051 0.087



Fig. 5. Relative importance of the major groups of predictor variables as well as sub-groups of MODIS variables in each region. Importance is measured as the percent
improvement in relative error when each variable group is used individually in a model of forest biomass. Regional abbreviations include: AK - Alaska, IW - Interior
West, PNW - Pacific Northwest, NC - North Central, SO - Southern, NE - Northeast, and PR - Puerto Rico.
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areas missing forest data (e.g., zones 32 and 35). Biomass model
performance results are given for individual and aggregated zones
in Appendix A.

3.2. Uncertainty maps

The forest probability map reflects uncertainty in pixel
assignments to forest or nonforest categories in the forest mask.
The forest probability map is a useful product of the forest-
nonforest modeling process because it allows users to choose
their own application-specific threshold for distinguishing
between forested and nonforest lands. The biomass percent
error map reflects uncertainty in the modeled pixel-level biomass
values.
In general, the uncertainty maps reflect those areas that are
more difficult to model because of their spatial characteristics,
because of poor quality training or predictor data available in
those areas, or because of a poor relationship between the
desired response variable and the predictor layers available. In
the forest probability map these were the interface areas between
forest and nonforest, and in the forest biomass map these were
the areas that were less intensely sampled, more affected by land
use history (which was not an available predictor layer) or
otherwise difficult to model.

Looking more closely at the resulting biomass, biomass un-
certainty, and forest probability maps, regional differences in
patterns of map uncertainty are apparent. In Fig. 3a, the Uinta
Mountains of the Interior West, large areas of highly certain



Fig. 6. An enlarged view of the natural color MODIS imagery (a), and the corresponding biomass dataset (b) from the Pacific Northwest in central Oregon.
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nonforest exist relatively unbroken by pixels with much
probability of forestland. In contrast, in the greater Mohawk
Valley region of the Northeast (Fig. 3d), there are few continuous
areas of highly certain nonforest.
In both regions it was the spatially heterogeneous areas that
were the most difficult to predict— the highly intermixed forest-
agriculture and forest-developed interfaces in the Northeast, and
the sparse canopy transition zones between forest and nonforest



Table 4
Effect of excluding variable groups on relative error by region

Variable
groups
excluded

Increase in relative error

NE NC SO INT PNW AK PR

MODIS 0.01 0.04 0.03 0.02 0.05 0.03 0.02
Topo 0.00 0.00 0.01 0.01 0.01 0.02 −0.03
NLCD/Veg† 0.00 0.00 0.01 0.01 0.02 0.01 0.02
Climate 0.00 0.00 0.01 0.00 0.01 0.03 0.00
Soils/geology – 0.01 0.01 – 0.02 – 0.00
Ecozone 0.00 0.01 0.01 – 0.01 0.01 −0.02
Human 0.00 – – – – – 0.00

†Land cover data for Puerto Rico from Helmer et al. (2002).
Increase in relative error is measured as the difference between relative error
obtained excluding each of the major predictor groups in turn, and the relative
error obtained using all the predictor variables.

Fig. 7. The density function in the Interior West of observed biomass values
(solid line), as compared to that from a model containing all the predictor
variables (dashed line), and from a model excluding all the MODIS-derived
variables (dotted line).
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areas at the elevational (i.e. treeline) and arid limits of tree growth
in the Interior West. In both regions, the probability of forest
values falling in the most uncertain range (0.4 to 0.6) represented
just over 10% of the dataset — a substantial portion, illustrating
the difficulty of accurately determining this edge, particularly at
this resolution.

The uncertainties associated with biomass predictions in the
Interior West are strongly related to the amount of biomass
present, with higher percent errors associated with the lower
biomass values (Fig. 3b). In the Northeast, percent errors were
lower in general and show a spatial pattern that differs from the
biomass predictions themselves (Fig. 3e). This pattern may reflect
the distribution of different types of forest and our ability to model
biomass in each, but also likely is the influence of the ancillary
layers used in the modeling. Without the strong influence of a
single variable, such as elevation, biomass predictions in the
Northeast relied upon different predictor layers in different areas,
each with varying levels of confidence that seemed to be visually
correlated with these layers. Percent error values were in general
much higher (above 0.8) in the Interior West (Fig. 3c) than in the
Northeast (Fig. 3f). This is in large part due to the relatively lower
biomass values present in the Interior West as compared to the
Northeast.

3.3. Agreement of spatial aggregations

As described in Section 2.3.3, estimates of total forest area
and biomass were computed by state from FIA sample plots.
These plot-based estimates were compared to map-based
estimates of total forest area and biomass that resulted from
counting forested pixels and summing their biomass. At the state
level, spatial aggregation results show fairly good agreement
between the two sources for forest area, with notable exceptions
in CO (where the map underestimates forest area) and GA, WV,
NC, TX, and OK (where the map overestimates forest area).
Twenty-nine of the states' map-based estimates fell within 10%
of the plot-based estimates for forest area (Fig. 4a). For
aboveground forest biomass, spatial aggregation results show
an overestimation of biomass in most areas, with the notable
exceptions of CA, OR, and WA where the map appears to
substantially underestimate forest biomass. Substantial overesti-
mation of state-level summaries appeared to occur in NC, VA,
GA, AK, CA, OR, WA, and WV. Twenty one of the states' map-
based estimates fell within 10% of the plot-based estimates for
biomass (Fig. 4b).

Table 3 illustrates the distribution of τ-values to assess
agreement between plot-and map-based estimates of total forest
area and total biomass at four spatial scales of aggregation across
the continental US. Map-based estimates of forest area generally
were in agreement with plot-based estimates for all hexagon
scales. However, spatial aggregations of hexagons with large
absolute τ-values indicate that the forest mask is problematic
in some portions of the Southeast; probably in parts of Maine,
Wisconsin, Minnesota, Oklahoma, and along the Great Lakes;
and perhaps in parts of the Pacific Coast states. These aggre-
gations of hexagons with disagreeing estimates appear to be
consistent across all four hexagon scales. Not surprisingly, the
biomass map appears to exhibit more disagreement than observed
for the forest mask at each hexagon aggregation. However, most
disagreement in the biomass map resulted from over-estimates,
while disagreement in the forest mask appeared more evenly
distributed between over-estimates and under-estimates.

3.4. Variable importance

The first column in Fig. 5 depicts the relative importance of the
major groups of predictor variables in each region. This was
measured by percent improvement, or decrease, in relative error
when each of these variable groups was used alone as predictor
sets in different models of biomass. The bar labeled “All Groups”
illustrates the maximum decrease in relative error obtained by
including all the predictor variables, indicating improvement over
just using the sample mean. In four of the seven regions (NC, IW,
PNW, and PR), the “MODIS group” resulted in the largest
improvement in relative error. In the other three regions (NE, SO,



Table 5
Estimates of C pools in live forest biomass of continental U.S. forests

Source Approach, spatial resolution, and study area addressed Forest components Forest biomass estimates
for the U.S. (Pg C)†

Not spatially explicit
Turner et al. (1995) Inventory data by forest type at State level

(1980–1990) for conterminous U.S.
Live trees, stumps, roots,
branches, twigs and shrubs

14.96‡

Birdsey and Heath (1995) Inventory data by forest type at State level
(1980–1992) for continental U.S.

Live trees, stumps, roots,
branches, twigs, shrubs and herbs

16.74

Spatially explicit
Potter (1999) Satellite-image scaled physiological model at 1°

(1980s — ignores forest age structure) for the Earth
Live trees, stumps, roots,
branches, twigs, and leaves.

37.65

Dong et al. (2003) Inventory data at Province level scaled with satellite imagery to 8 km
(1990–1995) for Northern Hemisphere temperate and boreal countries

Live trees, stumps, roots,
branches, twigs and shrubs

12.48

This study Inventory data at plot level scaled with satellite imagery to 250 m
(2001) for continental U.S.†

Live trees, stumps, roots,
branches and twigs

18.08§

†All estimates exclude Hawaii and Puerto Rico. This study estimates that Puerto Rican forests have 53.4 Mg C in aboveground live forest biomass.
‡Including 12.6 Pg C for conterminous U.S. plus 2.36 Pg C for Alaska from Birdsey and Heath (1995). §Includes root biomass estimated as 20% of total biomass
(Cairns et al., 1997).
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and AK) the “Climate group” resulted in the largest improvement
in relative error. Use of just the “NLCD” and “Topo” groups alone
resulted in smaller improvements in relative error than the
“MODIS” or “Climate” groups in all regions. Some regions also
opted to include additional variables groups related to soils,
development, etc. Although not common to all regions, they are
shown here for comparison sake. Note that because of high
correlation between variables, the sum of decreases in relative
error realized by modeling the groups individually cannot be
expected to equal the total decrease in error when modeling all
variables together. Variable groups contain redundant informa-
tion, as will be illustrated later.

The second column in Fig. 5 depicts the relative importance of
sub-groups of the MODIS-based variables as measured by
percent improvement, or decrease, in relative error when each of
these variable groups is used exclusively in the models. The bar
labeled “All MODIS” provides a reference for the maximum
decrease in relative error possible by using all the MODIS
variables together. Using the “Bands” group alone (including all
MODIS bands, all dates) resulted in models that performed nearly
as well in most regions. Use of just the “NDVI” variables,
“Treecov” (percent tree cover) variable, and “EVI” variables
resulted in progressively smaller decreases in relative error. Note
that the fire-related variables made no contribution when used
alone. As with the major groups, sub-groups of variables within
the MODIS group contain redundant information resulting in
non-additivity of their relative contributions. Fig. 6a is an
enlarged view of the natural color MODIS imagery, and the
corresponding biomass dataset is shown in Fig. 6b. The image is
from the Pacific Northwest in central Oregon, which visually
demonstrates the high degree of correspondence between the
MODIS data and biomass predictions.

While the results above illustrate the relative predictive
information contained in each groups or sub-groups of variables,
the true contribution of each variable to the final biomass map is
confounded by high correlation between variables. Consequently,
variable groups were excluded in turn from the original biomass
model, and the effect on relative error shown in Table 4. In all
cases except the MODIS group, exclusion of these variables
resulted in a 2% or less change in relative error. Exclusion of the
MODIS group had the largest impact over the other groups in all
regions, although that impact, too, was very small, ranging from
only 1% in the NE to 5% in the PNW. Also noted was the
negative, albeit small, impact of including groups of variables
exhibiting no contribution to the biomass prediction in Puerto
Rico, where small sample size made models more vulnerable to
extraneous information.

Not only was there minimal effect on pixel-level accuracies,
the potential effect on pixel aggregations can be surmised by
examining changes in density functions of predicted values under
different models. Fig. 7 illustrates the density function in
the Interior West of observed biomass values (solid line), as
compared to that from a model containing all the predictor
variables (dashed line), and from a model excluding all the
MODIS-derived variables (dotted line). Both the all-variable
model and the model excluding all the MODIS variables result in
nearly identical densities. This illustrates the tendency in all these
models to predict closely to the mean and not capture the
observed variability in biomass. We also observed a very large
discrepancy between variances for observed and variances for
predicted values. As a side note, a likely contributor to this
phenomenon is the spatial resolution (pixel size) at which the
models are implemented. We only have biomass observa-
tions from small field plots and are modeling these to biomass
on 250-m pixels. Yet we know that as pixel size increases, pixel
values become more like the mean, and variance decreases. This
will be addressed further in the discussion. But the differences
between predicted value variances resulting from models
excluding different groups of variables in turn are quite small.
Because of redundancy of information between predictors,
exclusion of any one of the major groups had only a small effect
on the prediction accuracies and aggregations.



1672 J.A. Blackard et al. / Remote Sensing of Environment 112 (2008) 1658–1677
3.5. Estimates of C pools

Carbon pool estimates in live forest biomass of U.S. forests,
derived from the map produced in this study, compare well with
estimates from other studies (Table 5). The estimates for U.S.
forests from Turner et al. (1995) and Birdsey and Heath (1995)
are strictly plot-based (with the exception of Alaska), and they use
FIA data from the 1980's to early 1990's. The estimate from
Potter (1999) is from a global study and is high because it ignores
forest age structure. It scales AVHRR NDVI data with a
biophysical model, estimating potential forest biomass of forested
areas. Dong et al. (2003) address temperate and boreal forests of
the Northern Hemisphere. They scale state-and province-level
estimates of total forest biomass from forest inventory data with
cumulative NDVI indices from AVHRR data. It is the smallest
estimate for around 1990 and may indicate that using satellite
imagery to scale state-level forest biomass underestimates forest
biomass. These forest carbon estimates probably also differ
because the scales of these studies range from national to global.

4. Discussion

Image products from MODIS were useful for this study not
only because they were practical, but also because they were
preferable for scaling reasons. From a practical standpoint, the
coarser spatial resolution of MODIS imagery makes applications
at sub-continental scales computationally less intensive com-
pared with finer resolution data. Moreover, MODIS image
products, like tree cover data and preprocessed image composites
that minimize cloud cover, along with the larger scene and tile
sizes, reduce the burdens of image preprocessing. At the same
time, the land imaging MODIS bands include optical bands
comparable to finer scale data. These bands center on visible,
near infrared and shortwave infrared bands that many studies
show are sensitive to forest cover and, within limits, forest stand
structure. Bands 1 and 2 of MODIS, for instance, are centered on
the red and near infrared parts of the electromagnetic spectrum
and are important in indices sensitive to photosynthetic
vegetation. Bands 2 and 6 are similar to Landsat image bands
4 (near infrared) and 5 (shortwave infrared), respectively, which
form indices sensitive to forest structure or successional stage in
both temperate (Fiorella & Ripple, 1993) and tropical (Helmer
et al., 2000) landscapes.

From a scaling perspective, the 250 to 500-m pixel size of
MODIS bands 1–2 and 3–7, respectively, were beneficial overall.
Variable importance analyses revealed that MODIS-derived
information could contribute more predictive power than other
classes of information when used in isolation. However, because
of strong correlation between variables, the true contribution of
MODIS-derived variables when used in concert with the broad
suite of other predictors was quite small. In addition, the coarse
scale likely added to plot-pixel differences. A summary of
possible sources of per-pixel errors in the biomass map would
include: 1) reflectance values in dense canopy forests saturate at
relatively low levels of forest biomass, 2) the spatial mismatch
between the FIA plots and the 250-m pixels, and 3) errors in the
forest/nonforest mask. With 250-m pixels, positional inaccuracy
is unlikely to contribute to model errors, though it could be a
factor.

First we address the saturation of reflectance values. In most
mapping zones, themodels tended to underestimate large biomass
densities and overestimate small ones, truncating the range of
values predicted and adding to the average relative error in
models. The most important source of these residual errors in
mapping models probably stems from the well-known fact that
canopy reflectance from passive optical sensors has limited
sensitivity to the canopy structure of dense forests, wheremost live
forest biomass is. Forests continue to accumulate biomass after
canopies close as well as after indices of vegetation greenness and
net primary production level off. Yet this very limitation was one
of the reasonswhyweworked at a spatial resolution of 250m. The
advantage of 250-m pixels is that less forestland is captured as
fully forested pixels that are more likely to saturate pixel
reflectance, and more forestland is captured within partially
forested, spatially coarse pixels that reflect both forest and
nonforest cover. This advantage provides a novel explanation of
why modeling at coarser spatial scales improves per-pixel
estimates of forest stand or canopy attributes. Studies report that
errors for per-pixel estimates of forest volume and biomass decline
from over 50% to 10–12% as 20 to 30-m pixels are aggregated to
larger pixels of 19 ha (Reese et al., 2002) and up to 360 ha
(Kennedy et al., 2000). Models of leaf area index also improve
when aggregating pixels from 30 m to 500–1000 m (Cohen et al.,
2003). Our own preliminary analyses revealed that biomassmodel
correlations decreased if we increased the minimum fraction of
forest area in the pixels that were included in a model.

In fact, we propose that tree or forest cover can relate to forest
biomass density of a pixel in two ways. First, mass balance tells
us that for uniform forest, the forest biomass density of a pixel is
directly proportional to forest cover. By assuming that each pixel
within the forest mask is fully forested, biomass density becomes
a function of tree or forest cover for a uniform forest. Secondly,
and in addition to simple mass balance, more fragmented forest or
forest adjacent to nonforest (and associated with less surrounding
tree or forest cover) is more likely to be disturbed or young
(Helmer, 2000), have less biomass per ha of forest (Brown et al.,
1993; Laurance et al., 1997), and have lower mean canopy
heights (E. Helmer, unpublished data). Under this scenario, tree
or forest cover data are among the most important predictor
variables where forest cover is less than about 60%. A clear
strength of the MODIS tree cover product, then, is that it is a
global product that explains significant variance in forest biomass
when data range from low to high tree cover. The weakness of
proportional tree or forest cover is that these variables reach their
maximums before forest biomass does. For example, the
MODIS-derived tree cover product explains 37% of the variance
in mean forest canopy heights across the Amazon basin where
tree cover is at least 20% (N=3828), but only 1.6% of the
variance in mean forest canopy heights where it is at least 60%
(N=2734). Mean canopy heights for forest with at least 60% or
75% tree cover do not significantly differ (Helmer & Lefsky,
2006; E. Helmer, unpublished data).

A second potential source of per-pixel error is the spatial
mismatch between the size of an FIA plot, which is distributed
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over 0.67–2.5 ha (depending on region of the country), and the
larger, 250-m pixels that extend over 6.25 ha. This situation,
where a single FIA plot may not represent the average of the
surrounding 6 ha, could inflate error estimates where local
variability in forest biomass is high (for biomass estimates) and/
or land cover heterogeneity is high (for forest/nonforest
estimates). If so, the model errors from these site-specific
assessments may conservatively gauge pixel-level errors in
biomass densities. This effect of spatial mismatch on model
performance measures has been noted by others (Congalton &
Plourde, 2000; Foody, 2002; Smith et al., 2003; Verbyla &
Hammond, 1995).

A third potential source of error is that pixels with less than
0.5 predicted probability of forest were considered ‘nonforest’
and received no biomass estimates, even though they could
contain forest cover and biomass. Likewise, pixels having more
than 0.5 predicted probability forest were considered forest. This
tendency to underestimate forest area in sparsely forested
regions, and overestimate it in heavily forested ones, is well
documented for thematic land cover classifications of coarse
spatial resolution pixels (Kuusela & Päivinen, 1995; Mayaux &
Lambin, 1995; Nelson, 1989). Furthermore, FIA plot-based
estimates pertain to forest land use, while satellite image-based
estimates portray forest land cover. FIA definitions of forest land
use and land cover are equivalent in many, but not all areas. For
example, a change from forest cover to nonforest cover occurs
when harvest, wildfire, windstorm, or other events result in
removal of standing live trees. Such treeless areas still are
defined as forest land use, assuming that regeneration is expected
to occur and other land uses are not intended. Conversely, some
areas having extensive tree cover are defined as nonforest use,
due to other prevailing uses of the land, e.g., treed picnic areas,
parks, and golf courses. In addition, effective differences in
definition exist between what is observed and inventoried on the
ground (e.g. total aboveground tree biomass; tree-covered
residential areas) and what is captured by a satellite-borne
optical sensor (e.g. tree biomass visible from above). Thus, some
apparent discrepancies between plots and pixels, and resulting
decreases in model accuracies, may, in fact, be artifacts of
definitional inconsistencies between land use and land cover, and
differences between ground inventory and optical satellite
perspectives. Independent efforts are being initiated to assess
these discrepancies, including use of non-FIA datasets for pixel
accuracy and error and demographic data for differentiating land
use from land cover.

Not surprisingly, a closer correspondence was observed
between spatial aggregations of statewide map-based estimates
and FIA plot-based estimates than between per-pixel compar-
isons with individual plots. These results are like those of
Muukkonen and Heiskanen (2005) who reported large estima-
tion errors of forest stand biomass, but spatially aggregated map-
based estimates of forest biomass were comparable to
municipality-level estimates from Finland's National Forest
Inventory. With regard to scales of aggregation, model-based
estimates of forest proportion and forest biomass tended to
agree with plot-based estimates at all four scales tested. This is
interesting in that despite sometime extremely high per-pixel
percent errors for biomass, spatial aggregations can still provide
reasonable estimates. This may be due to the fact that the per-
pixel accuracy assessment is negatively impacted by the fact that
the plot, which is taken to characterize the entire pixel, is very
small in size relative to the size of the pixel, and furthermore it is
only a single sample from the pixel. This negative effect is
ameliorated to some degree by the “averaging effects” of the
larger area of the hexagons; i.e., some of the errors from cancel
each other.

For some geographic locales, however, particularly for the
biomass map, hexagon aggregations with large absolute τ-values
raise concerns over the utility of the map in those specific areas.
This lack of consistency is not surprising, given the variability in
ecological conditions, image data, and plot data across the US.
Many of those states with the largest differences between the plot-
based and map-based estimates of forest biomass and forest area
are states where the most recent available data were from an older
periodic inventory, or where data were not available statewide, or
where poor GPS coordinates or other conditions made modeling
particularly difficult. In addition, some of the differences
observed may also reflect differences in definition (total
aboveground tree biomass versus tree biomass visible from
satellite-borne optical sensors). A relationship also exists between
the difference in the estimates for forest land and the difference in
estimates for forest biomass, implying that improvements in the
initial forest/nonforest mask, or use of a different cutoff in the
forest probability map, might increase compatibility between
plot-and map-based estimates in some areas.

Presenting uncertainty maps in conjunction with the
nationwide forest biomass map emphasizes that the biomass
estimates are somewhat imprecise and that their uncertainty
varies by location. It is important to include this uncertainty
information in assessing the reliability of model-based estimates
of forest area and biomass. The map-based estimates of
nationwide total live above ground biomass yield estimates of
total forest C storage that are within the range of previous map-
and plot-based estimates of C storage or biomass, and they are
consistent with the consensus that forests in the Northern
hemisphere are a net C sink (Pacala et al., 2001; Schimel et al.,
2001).

Zone discrepancies still exist in the current final map of
aboveground forest biomass presented here. Considerable effort
went in to compiling and screening the FIA data, however some
areas were still handicapped by holes in the available data (e.g.
zones 26, 32, 34, 35, and 36 in TX and OK), out-of-date plot
data in an area of rapid change (much of the Southeast), and low
quality GPS coordinates for the FIA plots (several states in the
Southeast). These show up in the current map as distinct lines
between zones where one side of the line may have been
modeled with local but inaccurate data, and the other side of the
line was modeled with more accurate but more distant data
requiring an extrapolation of the model into the area of interest.
This project, among others, highlights the important effects on
mapping of both quantity and quality of FIA plot data, and the
high value of improving such data. The current efforts within
FIA including the shift to annual inventory, complete coverage
with GPS and consistent data collection protocols nationwide
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should substantially alleviate these problems for future modeling
efforts.

5. Conclusions

Spatially explicit forest biomass information at the scale of
the US provides an unprecedented picture of how forest
biomass is distributed spatially across US landscapes and
permits visual assessment of forest biomass distribution. It
synthesizes point data from tens of thousands of ground plots
into one spatial dataset that can easily feed into those ecosystem
and atmospheric models that do not assimilate the point-based
data. The accuracy assessments reflect the understanding that
the data are primarily useful for coarse-scale modeling. The
accompanying spatially explicit datasets of model uncertainty
provide information critical to estimating uncertainty in such
atmospheric, ecosystem, or other models and estimates (Brown
et al., 1993; Brown & Schroeder, 1999; Canadell et al., 2000;
Dong et al., 2003; Nemani et al., 2003; Potter, 1999).
Nationwide spatially explicit modeling of forest characteristics
with ground-based inventory data presented logistical and
institutional challenges. Although overcoming those challenges
required extensive national coordination, it forged an institu-
tional process for nationwide forest attribute mapping that
benefited from regional expertise.
Appendix A. Per-pixel measures of performance for forest/
nonforest maps based on independent test sets, by zone
within regions
Mapping zone
 PCC
 Kappa
 Sensitivity
 Specificity
 Test set sample size
Northeast

52
 0.91
 0.18
 0.18
 0.97
 160

60
 0.86
 0.69
 0.73
 0.94
 154

61
 0.88
 0.73
 0.91
 0.82
 171

62
 0.86
 0.71
 0.88
 0.82
 104

63
 0.84
 0.62
 0.9
 0.71
 70

64
 0.76
 0.36
 0.83
 0.54
 55

65
 0.88
 0.73
 0.95
 0.75
 139

66
 0.95
 0.52
 0.99
 0.45
 328
Northcentral

30, 31
 0.98
 0.56
 0.50
 0.99
 1613

33, 38, 43
 0.94
 0.50
 0.54
 0.97
 848

41
 0.89
 0.78
 0.92
 0.87
 754

44
 0.86
 0.80
 0.86
 0.94
 696

47
 0.80
 0.53
 0.65
 0.87
 221

49
 0.95
 0.82
 0.80
 0.98
 299

50
 0.90
 0.80
 0.90
 0.90
 632

51
 0.89
 0.78
 0.84
 0.93
 735
Interior West

10
 0.92
 0.59
 0.99
 0.49
 525

12
 0.94
 0.72
 0.75
 0.97
 883

13
 0.96
 0.50
 0.58
 1.00
 121

14
 0.93
 0.10
 0.08
 0.99
 220

15
 0.83
 0.63
 0.88
 0.75
 338

16
 0.75
 0.42
 0.92
 0.47
 298

17
 0.89
 0.69
 0.74
 0.94
 397
(continued)Appendix A (continued )
Mapping zone
 PCC
 Kappa
 Sensitivity
 Specificity
 Test set sample size
Interior West
18
 0.94
 0.38
 0.35
 0.98
 413

19
 0.92
 0.84
 0.93
 0.91
 410

20
 0.96
 0.41
 0.32
 0.99
 535

21
 0.88
 0.75
 0.91
 0.84
 245

22
 0.97
 0.42
 0.28
 1.00
 466

23
 0.8
 0.48
 0.62
 0.87
 332

24
 0.89
 0.68
 0.73
 0.94
 486

25
 0.89
 0.54
 0.52
 0.96
 366

27
 0.92
 0.50
 0.47
 0.97
 287

28
 0.82
 0.64
 0.87
 0.77
 292

29
 0.95
 0.66
 0.62
 0.98
 582
Pacific Northwest

1
 0.89
 0.63
 0.95
 0.63
 3245

2
 0.89
 0.75
 0.93
 0.81
 1832

3
 0.88
 0.74
 0.91
 0.83
 1949

4
 0.97
 0.69
 0.65
 0.99
 3442

5
 0.99
 0.00
 0.00
 1.00
 2150

6
 0.87
 0.74
 0.87
 0.87
 2406

7
 0.85
 0.71
 0.89
 0.82
 2981

8
 0.97
 0.54
 0.45
 0.99
 1457

9
 0.87
 0.54
 0.56
 0.94
 5464
Southern

26, 32, 36
 0.96
 0.86
 0.86
 0.99
 188

34
 –
 –
 –
 –
 0

35
 –
 –
 –
 –
 0

37
 0.88
 0.73
 0.93
 0.79
 410

45
 0.88
 0.66
 0.65
 0.96
 216

46
 0.81
 0.43
 0.90
 0.59
 594

47
 0.87
 0.71
 0.78
 0.83
 149

48
 0.85
 0.69
 0.93
 0.74
 119

53
 0.87
 0.64
 0.93
 0.69
 106

54, 59
 0.86
 0.35
 0.95
 0.35
 156

55
 0.88
 0.59
 0.92
 0.70
 197

56
 0.67
 0.39
 0.61
 0.73
 63

57
 0.83
 0.38
 0.96
 0.35
 93

58
 0.86
 0.35
 0.97
 0.30
 118

Alaska
 0.94
 0.88
 0.93
 0.95
 6553

Puerto Rico
 0.79
 0.57
 0.93
 0.64
 28
Appendix B. Per-pixel measures of performance for biomass
maps based on independent test sets, by zone within region
Mapping
zone
Average
absolute error
Relative
error
Correlation
coefficient
Test set
sample size
Northeast

52
 88.3
 1.39
 0.17
 19

60
 63.2
 0.82
 0.53
 65

61
 65.0
 0.97
 0.32
 133

62
 64.5
 0.95
 0.39
 171

63
 67.8
 0.93
 0.44
 159

64
 57.0
 0.91
 0.40
 195

65
 60.4
 0.95
 0.22
 142

66
 49.7
 0.73
 0.33
 272
Northcentral

30, 31, 29, 40, 42
 43.0
 0.85
 0.39
 51

33, 38, 43
 40.8
 0.98
 0.35
 50

44, 49
 44.4
 1.03
 0.12
 347
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(continued)Appendix B (continued )
Mapping
zone
Average
absolute error
Relative
error
Correlation
coefficient
Test set
sample size
Northcentral
41
 40.6
 0.90
 0.44
 313

50
 44.1
 0.87
 0.47
 308

51
 46.0
 0.90
 0.45
 197
Interior West

10
 66.0
 0.81
 0.57
 468

12, 13, 14
 17.1
 0.90
 0.31
 123

15
 26.1
 0.58
 0.71
 230

16
 39.9
 0.76
 0.57
 203

17, 18
 22.4
 0.86
 0.48
 103

19
 52.0
 0.84
 0.46
 207

20, 29
 34.5
 0.72
 0.59
 80

21
 50.4
 0.75
 0.59
 134

22, 23
 24.4
 0.76
 0.68
 105

24
 17.9
 0.74
 0.69
 114

25, 27
 18.0
 0.64
 0.71
 85

28
 39.9
 0.68
 0.63
 171
Pacific Northwest

1
 132.6
 0.81
 0.51
 529

2
 157.1
 0.88
 0.46
 169

3
 144.8
 0.84
 0.52
 146

4, 5
 93.1
 0.93
 0.28
 45

6
 119.2
 0.76
 0.49
 267

7
 116.6
 0.69
 0.57
 535

8, 9
 51.58
 0.85
 0.45
 289
Southern

26, 32, 36
 26.8
 1.02
 0.20
 17

34
 -
 -
 -
 0

35
 -
 -
 -
 0

37
 54.7
 0.96
 0.26
 256

45
 40.7
 0.86
 0.35
 48

46
 63.5
 0.93
 0.25
 414

47
 65.5
 1.05
 0.14
 94

48
 56.6
 0.96
 0.24
 67

53
 62.5
 0.89
 0.31
 82

54
 51.7
 1.06
 0.08
 119

55
 64.6
 0.95
 0.28
 159

56
 94.6
 0.74
 0.39
 26

57
 59.7
 0.97
 0.38
 73

58
 117.6
 0.89
 0.34
 138

59
 87.2
 0.96
 0.39
 96

Alaska
 91.5
 0.59
 0.69
 430

Puerto Rico
 65.0
 0.51
 0.92
 ⁎
Average absolute error is reported inmetric tons per hectare. ⁎10-fold cross-validaton.
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